公式独立成行,用$$
包裹latex
代码
行内公式,用左 latex
,右 /latex
包裹latex
代码,(加上[ ]
)
When $$ a \ne 0 $$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\)
标量场\(\varphi\)的梯度:
\({\rm grad}\varphi=\frac{\partial\varphi}{\partial x}e_1+\frac{\partial\varphi}{\partial y}e_2+\frac{\partial\varphi}{\partial z}e_3=\nabla\varphi\)Thus we can write a vector \({\bf a}\in\mathbb {R}^2\)as
\({\bf a}=\left(\begin{matrix}a_1\\a_2\end{matrix}\right)\)对应位置元素相加即可。
\(\left(\begin{matrix}a_1\\a_2\end{matrix}\right)+\left(\begin{matrix}b_1\\b_2\end{matrix}\right)=\left(\begin{matrix}a_1+b_1\\a_2+b_2\end{matrix}\right)\)范数以及标准化
欧几里得范数(Euclidean Vector Norm)
For a vector \({\bf v}\in\mathbb{ R}^n\),the euclidean norm of \(\mathbf{v}\)is defined as,
\(\parallel\mathbf{v}\parallel=\left(\sum_{i=1}^{n}{v_i^2}\right)^\frac{1}{2}=\sqrt{\left\langle \mathbf{v,v}\right\rangle} \)
\(\boxed{\vec{s}}\) , \(\overrightarrow{suv}\)
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,20,100)
plt.plot(x, np.sin(x))
plt.show()
Comments | NOTHING